Sunday, May 6, 2012

Example of Solutions for Paper 1


1
Given f(x) = x + 3 and g(x) = 6x2 + 3.
Diberi f(x) = x + 3 dan g(x) = 6x2 + 3.
gf(x) = g(f(x))
     = g(x + 3)
     = 6(x + 3)2 + 3
     = 6(x2 + 6x + 9) + 3
     = 6x2 + 36x + 57
gf(−3) = 6(−3)2 + 36(−3) + 57
     = 3

2
α + β = −4
αβ = −4
New equation:
Sum of roots,
(1 − 9α) + (1 − 9β) = −9(α + β) + 1
     = −9(−4) + 1
     = 37
Product of roots,
(1 − 9α)(1 − 9β) = 81αβ − 9α − 9β + 1
     = 81(−4) − 9(−4) + 1
     = −287
Equation:
x2 − 37x − 287 = 0

3
−6x2nx − 6 = x
−6x2 + (−n − 1)x − 6 = 0
The equation has two equal roots
b2 − 4ac = 0
(−n − 1)2 − 4(−6)(−6) = 0
n2 + 2n + 1 − 144 = 0
n2 + 2n − 143 = 0
(n − 11)(n + 13) = 0
n = 11 or n = −13

4
f(x) = y = 4x2 + 8x + k + 2
The equation does not have real roots
b2 − 4ac < 0
(8)2 − 4(4)(k + 2) < 0
64 − 32 − 16k < 0
−16k < −32
k > 2

5
y = x2 − 2hx − 2h
   = x2 − 2hx + (
)2 − ()2 − 2h
   = (xh)2h2 − 2h
Minimum value = − h2 − 2h
h2 − 2h = −3
h2 + 2h − 3 = 0
(h − 1)(h + 3) = 0
h = 1 or h = −3

6
−3 logx a − 5 logx b + logx ab
= −logx a3 − logx b5 + logx ab
= logx

= logx

7
logx 128 = −
128 = x

x = 128

   = 2

   = 4


9
PQ = 5
= 5
= 5

Squaring both sides,
(6a − 4)2 + 42 = 52
(6x − 4)2 = 25 − 16
(6x − 4)2 = 9
6x − 4 = ±3

a =
or a =

10
Gradient of EF
=

= 1
(1)m2 = −1
m2 = −1

Midpoint of EF
= (
, )
= (−6, 6)

Equation:
y − 6 = −(x + 6)
y + 6 = x + 6
x + y = 0

11
Rearrange the data,
41   59   62   78   85   87   89
First quartile = 59
Third quartile = 87
Interquartile range
= 87 − 59
= 28

12
(3x2 + 2x + 4) = f(x) = [3x2 + 2x + 4]
   = 3(2)2 + 2(2) + 4 − [3(2)2 + 2(2) + 4]
   = 20 − (20)
   = 0

13
30° 54'
= 30.9 ×

= 0.5394 rad.

14
0.6π rad.
= 0.6π ×

= 108°

15
Step 1:
Langkah 1:
Let δx be a small increment in x and δy be the corresponding small increment in y.
Biar δx menjadi tokokan kecil pada x dan δy menjadi tokokan yang sepadan pada y.

Step 2:
Langkah 2:
y = x2 + 7 ----- (1)
y + δy = (x + δx)2 + 7
y + δy = x2 + 2xx) + (δx)2 + 7 ----- (2)

Step 3:
Langkah 3:
(2) − (1),
δy = 2xx) + (δx)2

Step 4:
Langkah 4:
= 2x + (δx)
= (2x + (δx))
      = 2x
Therefore,
Maka,
= 2x

16
y = −x4 + 2x3
= −4x3 + 6x2

At point (2, 0),
= −4(2)3 + 6(2)2
   = −8
Therefore, the gradient of the tangent at point (2, 0) = −8

17
(a)
sin SOU = = 0.5
SOU = 30°
   = 30 ×

   = 0.5237 rad.
SOT = 2 × 0.5237
   = 1.0474 rad.
(b)
Area of sector SOT = r2θ
   =
(16)2(1.0474)
   = 134.07 cm2
OU =

   = 13.86 cm
Area of triangle OST
=
× 13.86 × 16
= 110.88 cm2
Area of the shaded region
= 134.07 − 110.88
= 23.19 cm2

18
(a)
BC = BA + AC
   = −2j
~ + 7i~
   = 7i
~ − 2j~
(b)
AD = AB + BD
   = AB
 + BC
   = 2j
~ + (7i~ − 2j~)
   =
i~ + j~

19
Price index, I = × 100
178.3 =
× 100
P1985 =

   = RM2300

20
Food
Makanan
Price index, I
Indeks harga, I
Weightage, W
Pemberat, W
WI
A
× 100 = 91
8
728
B
× 100 = 82
2
164
C
× 100 = 195
9
1755
D
× 100 = 183
8
1464


W = 27
WI = 4111
Composite index,
=
   =

   = 152.3

21
(a)
Sn = ( n + 1)
S9 =
[(9) + 1]
   =
(10)
   = 45
(b)
T9 = 45 − [(8) + 1]
   = 45 − 36
   = 9

22
(a)
T2 = 30
ar2 = 30 −−−− (1)
T2 + T3 = 35
30 + ar2 = 35
ar2 = 5 −−−− (2)
(2) ÷ (1),
=
r =

Substitute r =
into (1),
a(
)1 = 30
a = 180
(b)
Sum to infinity
=

=

= 180 ×

= 216

23
= + 8
= 8() − 8
X =

Y =

24
(a)
f(x) dx = −∫ f(x) dx
   = −3
(b)
[3 + 5f(x)] dx
= ∫
3 dx + 5∫ f(x) dx
= [3x]
+ 5(3)
= (27 − 6) + 15
= 36

25
OH = 3HF
OH
 = OF
   =
(OE + OG)
   =
(8x~  + 10y~)
   = 6x
~  + y~