1
|
Given f(x) = x
+ 3 and g(x) = 6x2 + 3.
Diberi f(x) = x + 3 dan g(x) = 6x2 + 3. gf(x) = g(f(x)) = g(x + 3) = 6(x + 3)2 + 3 = 6(x2 + 6x + 9) + 3 = 6x2 + 36x + 57 gf(−3) = 6(−3)2 + 36(−3) + 57 = 3 |
2
|
α + β = −4
αβ = −4 New equation: Sum of roots, (1 − 9α) + (1 − 9β) = −9(α + β) + 1 = −9(−4) + 1 = 37 Product of roots, (1 − 9α)(1 − 9β) = 81αβ − 9α − 9β + 1 = 81(−4) − 9(−4) + 1 = −287 Equation: x2 − 37x − 287 = 0 |
3
|
−6x2 − nx
− 6 = x
−6x2 + (−n − 1)x − 6 = 0 The equation has two equal roots b2 − 4ac = 0 (−n − 1)2 − 4(−6)(−6) = 0 n2 + 2n + 1 − 144 = 0 n2 + 2n − 143 = 0 (n − 11)(n + 13) = 0 n = 11 or n = −13 |
4
|
f(x) = y = 4x2 + 8x
+ k + 2
The equation does not have real roots b2 − 4ac < 0 (8)2 − 4(4)(k + 2) < 0 64 − 32 − 16k < 0 −16k < −32 k > 2 |
5
|
y = x2 − 2hx − 2h
= x2 − 2hx + ()2 − ()2 − 2h = (x − h)2 − h2 − 2h Minimum value = − h2 − 2h −h2 − 2h = −3 h2 + 2h − 3 = 0 (h − 1)(h + 3) = 0 h = 1 or h = −3 |
6
|
−3 logx a
− 5 logx b + logx ab
= −logx a3 − logx b5 + logx ab = logx = logx |
7
|
logx 128 = −
128 = x x = 128 = 2 = 4 |
9
|
PQ = 5
= 5 = 5 Squaring both sides, (6a − 4)2 + 42 = 52 (6x − 4)2 = 25 − 16 (6x − 4)2 = 9 6x − 4 = ±3 a = or a = |
10
|
Gradient of EF
= = 1 (1)m2 = −1 m2 = −1 Midpoint of EF = (, ) = (−6, 6) Equation: y − 6 = −(x + 6) −y + 6 = x + 6 x + y = 0 |
11
|
Rearrange the data,
41 59 62 78 85 87 89 First quartile = 59 Third quartile = 87 Interquartile range = 87 − 59 = 28 |
12
|
(3x2 + 2x + 4) = f(x)
= [3x2 + 2x + 4]
= 3(2)2 + 2(2) + 4 − [3(2)2 + 2(2) + 4] = 20 − (20) = 0 |
13
|
30° 54'
= 30.9 × = 0.5394 rad. |
14
|
0.6π rad.
= 0.6π × = 108° |
15
|
Step 1:
Langkah 1: Let δx be a small increment in x and δy be the corresponding small increment in y. Biar δx menjadi tokokan kecil pada x dan δy menjadi tokokan yang sepadan pada y. Step 2: Langkah 2: y = x2 + 7 ----- (1) y + δy = (x + δx)2 + 7 y + δy = x2 + 2x(δx) + (δx)2 + 7 ----- (2) Step 3: Langkah 3: (2) − (1), δy = 2x(δx) + (δx)2 Step 4: Langkah 4: = 2x + (δx) = (2x + (δx)) = 2x Therefore, Maka, = 2x |
16
|
y = −x4 + 2x3
= −4x3 + 6x2 At point (2, 0), = −4(2)3 + 6(2)2 = −8 Therefore, the gradient of the tangent at point (2, 0) = −8 |
17
|
|
18
|
|
19
|
Price index, I = × 100
178.3 = × 100 P1985 = = RM2300 |
20
|
Composite index,
= = = 152.3 |
21
|
|
22
|
|
23
|
= + 8
= 8() − 8 X = Y = |
24
|
|
25
|
OH = 3HF
OH→ = OF→ = (OE→ + OG→) = (8x~ + 10y~) = 6x~ + y~ |